Seeking New Measures for Gender Bias Effects in Open-Source Software

Huilian Sophie Qiu
Carnegie Mellon University
Pittsburgh, PA, USA
hsqq@cmu.edu

Moira Connell
The Ellis School
Pittsburgh, PA, USA
connellm@theellisschool.org

ABSTRACT
The problem of low gender diversity in open-source software (OSS) has been reported and studied in recent years. However, prior studies found that gender bias theories in social sciences cannot help us effectively identify gender bias effects in OSS. Our study takes the first step toward finding new measures for gender bias in OSS. This paper attempts to employ linguistic theories to identify different collaboration patterns between different genders. Our contributions are two-fold: we review linguistic literature on diversity and online collaboration, then we apply linguistic theories from our literature reviews to a random sample of code review conversations on GitHub.

1 INTRODUCTION
The low gender diversity in the open-source software (OSS) community is a well-known phenomenon: among the GitHub users whose genders can be inferred, less than 10% are women [1, 6, 15, 30]. The low gender diversity is problematic as it can threaten OSS sustainability as a whole. Firstly, low gender diversity is suboptimal for project success: studies found that higher gender diversity is associated with fewer community smells [7, 38] and higher team performance [26, 34, 40]. Moreover, the highly imbalanced gender representation and the unwelcoming culture in some open-source projects [23] may discourage underrepresented groups from initial participation, which limits opportunities both for those individuals and for employers that use OSS as a talent pool [32, 33].

One of the reasons for women’s low participation is gender bias [19, 23, 39]. Based on interviews with OSS developers, Nafus [23] pointed out that, in OSS, “sexist behavior is […] as constant as it is extreme.” A quantitative study by Terrell et al. [39] reports that female contributors face unfair treatments when making code contributions.

This piece of work builds upon a prior attempt on investigating gender bias effects in OSS by Imtiaz et al. [19]. In their paper, Imtiaz et al. adapted a gender bias framework by Williams and Dempsey [42], which was developed for women in the workforce, to the context of OSS. The framework discusses four effects of gender bias: women may face in the workforce. Prove-It-Again: women must provide more evidence than men to demonstrate their competence. Tightrope: women avoid extreme behaviors, e.g., too polite or too impolite, to avoid backlash. Maternal Wall: women who are mothers have their commitment and competence questioned. Tug of War: women are discouraging to other women.

Using several count-based measures and statistical tests, Imtiaz et al. [19] only found strong evidence supporting Tightrope, where women tend to behave in a more restrained way than men. However, we should not conclude the absence of these bias effects without searching for better or more suitable measures and analyses.

Our vision is to investigate the effects of gender bias deeper by examining the language used in open-source conversations using natural language processing (NLP) techniques. As a sociotechnical activity, OSS development entails many communications in the form of natural language, such as code review discussions. It is, therefore, reasonable to suppose that the use of language in a conversation might provide information about roles, status, and other aspects of an individual or a group’s dynamics [9]. For example, Paul et al. [28] analyze the sentiment of the language in code review comments by contributors of different genders and found some significant differences.

We can further investigate that if different language patterns used by different genders can have an impact on the contribution outcome. There is evidence in other domains, such as medical care, where studies show that the use of language can reflect healthcare providers’ implicit bias, which can negatively impact the results of medical care and patient satisfaction, especially among patients of minority groups [18, 43].

We propose a new method to investigate gender bias in open-source communication. We first review linguistics literature to identify potential linguistic features whose usages differ between genders. Using these features, we can run a model to find out what linguistic features are more likely to be associated with a higher success rate in code contribution. If certain female-dominant linguistic features are found to be associated with a lower success rate, then it might suggest the presence of implicit bias.

This paper reports our first step in implementing this method. In Section 2, we discuss linguistic theories that are related to how people of different genders may talk differently in online communications. Because not all linguistic features can be observed in conversations in software engineering, in Section 3, we describe how we sample a small set of pull request (PR) conversations on GitHub and perform qualitative analysis to select relevant linguistic measures. In Section 4, we discuss our findings and in Section 5, we discuss current problems and future plans.
2 RELATED WORK

2.1 Gender diversity in open-source software communities

Traditionally, technology is considered a male-dominated field, but recently, OSS communities have started to value diversity of all kinds, including gender. There is empirical evidence to date that suggests that gender diversity is associated with higher team productivity [26, 40] and fewer community smells [7, 38]. Russo and Stol [34] confirmed that mixed-gender software engineering teams are associated with better performance because men and women tend to display different personalities. Moreover, a software team with higher diversity is more likely to understand users' needs better because the developers can more naturally represent a wider group of their intended users [22].

Several studies have identified gender bias in OSS. Terrell et al. [39] showed that women's PR acceptance rate is lower than their male counterparts if they are outsiders to the project and their gender is visible on their profiles. However, when their gender is not visible, women's acceptance rate is higher than men's. Imtiaz et al. [19] have investigated the gender bias on OSS platforms quantitatively using Williams and Dempsey's framework [42] derived from gender studies literature. They found that the effect of gender bias is largely invisible on GitHub. However, there are still signals of women concentrating their work in fewer places and communicating, compared to men, in a more restrained manner. Wang et al. [41] focused on the competence-conference gap and found that, compared to male developers, female developers are often hesitant to contribute to new projects even when they possess the competence to make valuable contributions.

2.2 Linguistic Politeness Theory

The linguistic politeness theory was developed by Brown and Levinson [3]. Centered on the notion of avoiding face-threatening acts, Brown and Levinson outlined two types of politeness strategies: positive politeness and negative politeness. A positive politeness approach is oriented towards the hearer's positive face, the want that his or her wants are desirable to some others. Some of the examples include giving complement or showing respect. A negative politeness approach is an attempt to save the hearer's negative face, the want that his or her actions are unimpeded by others, by avoiding placing burdens on the hearers' actions. Some examples include using hedge words and being indirect or apologetic.

The politeness theory has been applied to various research projects to understand communication in online communities. For instance, Danescu-Niculescu-Mizil et al. [10] compiled a list of features, including the use of second-person pronouns and "please", that can be used to classify politeness on platforms such as Wikipedia and Stack Exchange. Burke and Kraut [4] measured and compared the readers' perceived politeness on conversations from 12 online groups on various topics. They found significant differences across groups: in some technical groups, politeness increase reply rates, but in some political groups, rudeness is more effective. Another research by Fangl et al. [13] explored the use of gratitude, one of the politeness strategies, on Stack Overflow and found that gratitude expressions can motivate users to generate content of higher quality. However, few studies examined how gender intersects with politeness strategy in the context of OSS communities.

2.3 Closed-vocabulary methods

A classical approach to analyzing language differences is to rely on a pre-set vocabulary. Mulac et al. [21] provided a literature review on gender differences in language usage and listed words that are found to be more likely to be used by one gender. In their samples, some of the linguistic features more often used by women include negations and hedges. Some of the linguistic feature more often used by men include elliptical sentences and "I" references.

Linguistic Inquiry and Word Count (LIWC) [29] is a widely used list of words for conversation analysis. LIWC contains 2,000 words divided into 74 linguistic categories. Researchers can count the percentage of the number of occurrences of each word in the corpus and use them as features. Using LIWC, Newman et al. [25] coded a large corpus of text and summarized a list of vocabularies with their mean and standard deviation of usage by different genders. For example, they found that negation is more used by women than men and women use more emotion words and third person pronouns.

2.4 Open-vocabulary methods

An open-vocabulary method tries to extract connections or patterns from the data rather than rely on a priori vocabulary. Schwartz et al. [36] applied differential language analysis (DLA), an open-vocabulary method, to analyze over 700 million words from a Facebook dataset and compare language use across different identifiers, such as personality, gender, and age. Their analysis found that female users used more emotion-related words and first-person singulars while men used more swear words and object words (e.g., Xbox). The drawback is that the results from one study may not be directly applicable to other contexts. In this case, results obtained using Facebook data have limited value in software engineering context.

2.5 Sentiment analysis

Sentiment analysis [27] is a popular technique in the software-engineering community for text analytics, such as issue discussions [14] and pull request comments [17]. Some popular software engineering sentiment analysis tools include Senti4SD [5] and SentiCR [2], and SentiSE [20].

Paul et al. [28] used SentiSE [20] to analyze the sentiment of code review comments from six popular open-source projects. They found that women are less likely to express sentiment than men, and male developers write more frequent negative comments and fewer positive encouragements from their female collaborators.

2.6 Emojis

In recent years, emojis have become increasingly ubiquitous in online communication, and software communities are no exception. Nonverbal symbols have been a very important part of our online communication. As Dresner & Herring [11] states, "They are most often characterized as iconic indicators of emotion, conveyed through a communication channel that is parallel to the linguistic one." As a part of our review of literature on computer-mediated
communication, we surveyed literature surrounding emojis as a mode of communication and their specific relevance to gender.

Chen et al. [8] analyzed 134,419 anonymized Android users with self-reported genders and their 401 million messages over three months. They found statistically significant differences between women and men usage of emojis: women are more likely to use emojis than men and men and women have different preferences in using emojis to express sentiments.

3 METHODS AND DATA

In this preliminary analysis, we first randomly sampled 100,000 PRs with comments from GHTorrent [16] and used the gender inference tool Namsor [24] to infer the PR author’s gender. We use Namsor because it is one of the most accurate gender inference tools based on names [35, 37]. While we acknowledge that gender is not limited to binary, we recognize the difficulty and lack of information regarding non-binary genders in open source. Thus, to make gender identification more quantitatively tractable, we choose to simplify gender identification by assuming binary gender male and female in this study.

Namsor first infers one’s cultural origin using the last name, then infers the gender using the first name. Including one’s cultural origin can reduce misclassifications of names such as “Andrea”, which is a male given name in Italian but a female given name in English or German. Along with the gender classification outcome, Namsor also provides confidence that a user’s gender is correctly identified. We only kept the genders of users whose associated probability is higher than 0.80. The 0.80 threshold retained 83.8% of the gender data.

Due to the constraint of time, at this stage, we picked and coded 4 PRs by men contributors and four by female contributors from our 100,000. We encountered several difficulties when finding suitable PRs for our qualitative analysis. Since we want to analyze how people collaborate and interact, we only use PRs with at least four comments by human users and at least two participants. It is even more challenging to find PRs authored by a female contributor that satisfy our requirements.

For each comment, we mark the presence of linguistic features discussed by Newman et al. [25] and Mulac et al. [21], the two studies that used the closed-vocabulary method and provided a list of linguistic features that are more often observed among one gender than the other. We also augmented our qualitative coding on linguistic usage as we coded the conversations. Finally, we compiled a list of linguistic features present in open-source code review conversations.

4 RESULTS

Table 1 shows the list of linguistic features we found in our sample of PRs. Features are divided into columns “Women” and “Men” according to how previous studies found them to be more often associated with one gender than the other [21, 25]. Since we found conflicting evidence from existing studies [21, 25] on the use of 1st person pronouns, we put it under “Other”. Those without a reference to existing literature are the ones we observed when coding our samples. We will briefly discuss them later in this section.

From our small sample of 8 PRs, we were not able to observe any trends in which some of the linguistic features were more often associated with one gender than the other. Since our sample contains only merged PRs, we were not able to test if any of these features were associated with higher or lower success rates either. These two tasks are saved for future work.

Although we could not establish a systematic correlation between linguistic patterns and PR success, in this round of coding, we observed several linguistic phenomena that might be unique to the context of software engineering or even OSS.

4.1 More forms of negative politeness

In the classic politeness framework, negative politeness constitutes speech acts that avoid impositions on the hearer. In our sample of PRs, we observed several negative politeness strategies when providing code reviews or discussing the contribution.

One prevalent example is the use of the word “nitpick”. We observed several maintainers use the word “nitpick” when picking out small details that should be changed, e.g., start a variable name with a lower case letter. Egelman et al. [12] found that nitpicking was considered by many programmers as one of the causes of interpersonal conflicts. However, we think that the phrase “nitpick” serves as a negative politeness strategy here. By explicitly pointing out the comment is “nitpicking”, the reviewer is saving the author’s negative face, the want that his or her actions are unimpeded by others, by admitting that the requested change is small and would not overshadow the merit of the contribution.

4.2 Formality

We observed a spectrum of formality in code review conversations. In most cases, the conversation is more casual, as if in a chat. We observed the usage of slang and colloquialisms, reflecting that code review conversations sometimes can be less formal and even somewhat casual. However, there are also cases where people use comments similar to emails: they start by calling the name of the hearer using “@” in each comment.

4.3 Inviting Suggestions

We found many uses of the phrase “feel free” to provide suggestions or to indicate that suggestions “are welcome,” primarily by authors. We observed the occurrences of inviting suggestions to be the same among male and female authors in our small sample. This can be an interesting feature to model computationally since it may reflect the power dynamic between authors and reviewers.

4.4 Technical vs. personal

We found that more reviewers of women-authored PRs used second-person pronouns than those of men-authored PRs. In an analysis on n-grams that are overly represented in PRs with interpersonal conflicts and those without, Qiu et al. [31] found that second-person pronouns are more prevalent among conversations with interpersonal conflicts. Therefore, this feature is worth further investigation once our dataset is ready.

5 DISCUSSIONS

There are several problems we are still trying to solve.
While writing this submission, we are running a program mining a large corpus of PRs for us to perform quantitative analysis. Once we have the data ready, we will operationalize the linguistic features provided in Table 1 as well as some widely used NLP techniques, such as sentiment analysis [20], politeness strategies [10], and toxicity analysis. The output variable will be whether the PR was merged, indicating a successful contribution and collaboration. From the model, we plan to find if there are certain patterns that more often appear among successful PRs vs. non-successful PRs. Then we plan to look at if certain linguistic patterns associated with higher failure rates are more likely to be used among one gender than the other. So if this might suggest the presence of implicit bias in terms of language use. Because this is an early stage of our big research agenda, we are open to suggestions for refining our method.

REFERENCES

1. [n.d.]. ([n. d.]).

